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SUMMARY

The performance characteristics Of the I-40 Jjet-propulsion
engine are presented and analyzed for a range f altitude8 £fram
10,000 to 40,000 feet and a range of xam pressure ratios from 0. 98

to 1.76.
At an engine speed of 11,500 rgm, the net thrust and the net-
rs t hrust horsepower decreased about 25 percent at any airspeed with
- each 10,000-foot increase in altitude. At an altitude of 30,000 feet
- and an engi ne speed of 11,500 rpm, the net thrust increased from 1525
¥ to 1880 pounds with an increase of airspeed from 235 to 640 niles per

hour. At a constant engine speed O 11,500 rmm, the speclific fuel

consumption based on net-thrust horsepower showed no apparent alti-

tude effect and decreased from 2. 10 pounds to 0.80 pound of fuel per
hor sepower hour as the airspeed increased from 235 to 640 miles per

hour .

The use of gemeralizing factor8 for estimating altitude perform
ance Of the engine gave only fair results; for example, t he perform-
ance at 40,000 feet may be cal cul at e& from data obtained at
20,000 feet with an acouracy w thin about 9 percent at a corrected
engi ne speed of 11,500 rpm.

At an altitude of 20,000 feet, the internal dreg when the englne

wae windmilling at airspeeds from 235 to 550 miles per hour is shown
to increase fram 2.6 to 13.7 percent of the net thrust devel oped by
t he engi ne operating at 11,500 rpm at the same respective airspeeds.
At an airspeed of 400 miles per hour the windmilling drag decreased
from 8.4 percent of the net thrust devel oped by the engine operating
at 11,500 rpmat 10,000 feet to 5.6 percent at 40,000 feet.
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INTRODUCTION

An investigation has been comducted in the C eveland altitude
wind tunnel to determine the performance and operational character-
igtics of the I-40 Jet-propulsion engine and its components. The
over-all performance and the windmilling dreg characteristics of the
engine over a range of altitude8 from 10,000 to 40,000 feet and ram
pressure ratios from 0.98 to 1. 76 are presented. These rem pressure
rati o8 correspond to true airspeeds of about 0 to 640 miles per hour.

A preliminary presentation of general effecta observed in alti-
tude investigations of several Jet-propulsion englines including the
[-40 wae given in reference 1. The I-40 performance data presented
her ei n supersede t hose in reference 1 where slight differences exist
between corresponding curves.

Efficiencles of the englne conponents are presented as an aid
i n interpreting t he engine-performance curves. An induction-system
efficiency of 100 percent was used i n calculeting t he net thrust
and the ai rspeeds. The free-stream total pressure wes assumed to
be equal to the total preasure at the compressor inlets in order
that the performanc6 data nmay be applied to the installation of the
I-40 engine in any airplane i n which the induction-system ef fici ency
is known. Gas flow and thrust were calculated from survey-rake
measurements at the tail-pipe-nozzle outlet. The reliability O the
uge of generelizing factors i n estimating engine performance at any
altitude from experimental data obtai ned at another altitude was
exam ned.

Several types of fuel system were investigated on the engine
in en effort to improve the engline operation. Because none of the
revised systems naterial | y changed t he engi ne performance, t he per-
formance of the engine with the original fuel systemincluding a
barcmetric control end 40-gallon-pexr-hour fuel nozzl e8 i s presented.

DESCRIPTION OF ENGIHRE

The 1-40 jet-propulsion engine is 1025 inch88 in length from

the front of the accessory section to the rear of the exhaust cone,
48 inches in di anmeter, and weighs approximately 1850 pounds. The
power ratings Of the englne for static sea-level operation are:
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Mlitary
t ake- of f Normal Idling
Engine speed, (rpm) 11,500 11,000 3500
Thrust, (1b) 3,750 3,200 200
Maximum exhaust temperature, (OF) 1, 200 1,100 ------
rust specific fuael
t| on, Plbj]tzhr) (v 1:11:01.1.3‘115'5J 1.20 1.20 =vem==
Fuel flow, (Ib/Br) ecmmam - 880

The engine consists of five conponent seotions: compressor,
cambustion chanbers, turbine, accessory section, and exhaust cone
and tall pipe. The total area of the compressor inlets, Including
the S-mesgh screen covering the openings, 1s 6.53 square feet. The
compressor casing contains an alum numinpeller of the double-entry
centrifugal type, which is 30 inches in dlameter. Air discharges
fromthe Inmpeller into the diffuser, which guides and diffuses the
air into the air adapter8 connected to each of the 14 combustion-
chamber inlets.

The compressor inpeller is bolted between two flanged shaft8
that rotate on a ball thrust bearing at the front and a roller bear-
ing at the rear. ‘Therear shaft is coupled to the turbine shsfthby
a splined coupling and the front shaft drives the accessory train.
The turbine shaft al so rotates on a ball thrust bearing at the front
of the shaft and a roller bearing imediately ghead of the turbine.

The burner section is composed of 14 conbustion chanbers of
the t hrough-fl ow type into which the air and the fuel are introduced
at the front and fromwhich the hot product8 of combustion are dis-
chargedfrom the rear. Each combustion chamber contains &perf orated
and truncated conbustion liner that divides the combustion zone from
the t aper ed annuler passage through whi ch the secondary air flows.
The upstream end. of the conbustion liner is covered with a dome
having perforations for adnmittance of primary air into the conbustion
zone. Each done contains a 40-gallon-per-hour fuel nozzle with an
80° spray cons. Fuel is dlrected dowmstream slomg the axis of the
combustion chanmber. Ignition for starting i& provided by spark
plugs that project through the air adapter8 and the conbustion-
chamber dames into the fuel sprays of two conbustion chambers. All
conbusti on chanbers are interconmected with cross-ignition tubes,
which ignite the remalning conbusti onchanbers.

The combustion chambers dlscharge i nto a collector that forms
the nozzle box for the turbine. Xxheust gases leaving the turbine
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pass through the annul ar space formed& between the inner and outer
exhaust cones. The inner cone is supported by four vanes, which
al so reduce the rotation of the gases before they are dischaxrged
into t he exhaust pipe.

In the standard fuel system fuel is supplied to each fuel-
injection nozzle froma common fuel nmanifold at pressures ranging
from10 to 180 pounds per square inch, depending on engi ne speed
end altitude. The main fuel punp is a positive-displacement punp
driven by the engine. Fuel is punped to the fuel-nozzle nanifold
at high pressure. Fuel flow ls regulated by three controls: a
manual control valve, a '"barometric," and a governor. The manual-
control val ve consists of a poppet-type shut-off valve closed to
stop the engi ne and a sliding-cylinder throttling valve set by the
pilot for the desired operating speed. The baronetric and the
governor bypass the fuel fromthe high-pressure l'ine between the
fusl pump and t he nozzles back %o the pump inlet. The functlon of
the barometric is to nmintain constant englne speed for a given
cockplt throttle setting, regardless of changes in altitude and
airspeed. The governor linit8 the maximum engine speed to
11, 300 rpm.

Al bearings on the inpeller and turbine shafts and the splined
coupling are lubricated by Jets of oil punped fromthe accessory
section. The oil drains fromthe bearings into a sump and is pumped
back into the oil-supplyreservoir in the accessory case. The
acceassory case i s nmounted on the front of the engine and support8
t he engine accessorles, The gears and t he bearings i n t he accessory
drive assembly are splash-lubricated fromthe gear that drives the

oi | punp

Sone of the air approaching the rear inpeller inlet of the come
pressoris used for engine cooling air. A ccollng-alr fan mounted
on the front side of the turbine wheel punp8 cooling air through the
engine as shown in figure 1. A baffle on the engine is sealed t O
the nacelle wall to limt the cooling-air flow The nmaxi mum cooling-
air flow isgi ven by the manufacturer a8 about 2 percent of the air
flow through t he engine at an engine speed of 11,500 rpm.

TUNNEL INSTALLATION AND INSTRUMENTATION OF ENGINE

An I-40-3 engine wag installed in an airplane fuselage mounted
in the 20-foot-diameter test section of the altitude wind tunnel as
shown 1n figure 2. Air entered the airplane through inlets on both
sides of the fuselage near the wing fillet8 (fig. 3) and flowed

[~4el
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through ducts into a pl enum chember surrounding the engine. The air
then entered the engine t hrough openings on both sides of the double-
entry compressor. (See fig. 1.)

Two inlet configurations were used for these runs. In the flrst
configuration, air was taken fromthe tunnel test sectlon through the
normal airplane intake ducts for "static tests" (fig. 3). In the
second configuration, air fromthe tunnel make-up air system was
introduced into the alrplane's two inlet ducts through 8 Y-shaped ram
pipe (fig. 4. This air was throttl ed from approximately sea-level
pressure to the pressure corresponding to the desired ram pressure
ratio at 8 given altitude.

This airplane installation included 8 tail pi pe 93.3 Inches in
length. The tail pipe had 8 straight taper from 8 2l-inch di anmeter
at the exhaust-cone discharge to a 19-inch diameter at the tail-pipe-
nozzle outlet.

The engi ne was extensively Instrumented. (See fig. 5.) The
| ocation of the nine statlions used in making the engi ne analysis is
shown in figure 1. The data presented were obtained by means of the
instrumentation ldentified by slant type in figure 5. Ther nocoupl es
of the type used at stations 4 and 8 were celibrated for inpact tem
perature rise over 8 ramge of Mach nunbers fromO to 0.75. The
i npact recovery factors thus obtained were used to correct the indi-
cat ed thermocouple temperatures.

FROCEDURE

I nvestigations were conducted over 8 renge of altitudes from
10,000 to 40,000 feet and ram pressure ratios fromO0.98 to 1.76. At
each altitude and ram pressure ratio, the engi ne speed wae varied
from approximately ni ni num operable speed to 11,500 rme. During ram
tests, the pressure in the ram pipe was adjusted to give 8 tot81
pressure at the compressor inlet that corresponded to the desired
ram pressure ratio at the desired altitude; the pressure in the
tunnel was adJjusted to the static pressure at that altitude. The
air tenperatures in the rampipe ard in the tunnel were maintained
8s close to the desired values 8s the tunnel refrigerati on system
and running ti ne woul d allow.

When the ram pi pe was installed, measurements of engi ne thrust
and installation drag with the tunnel bal ance scale were nmade pos-
sible by the slip Joint in the ram pi pe about 36 feet upstream of
the inlets. (See fig. 4.)
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In order to determine the external dreg of the installation,
power-off drag tests were conducted with the inlete and the tail -
pi pe-nozzl e outl et covered with streanlined fairings. Power-off
drag tests were also run with the Y-shaped ram pi pe installed and
with 8 blind flange in the ram pipe just upstreamof the slip joint.

During static tests, speeds of 76 to 127 feet per second were
induced in the air of the tummel test sectlon by the ejector effect
of the jet amd by the tunnel exhaust scoop, which vas located in
the air stream i medi atel y downstream of the test section.

SYMBOLS

The symbols and necessary mumerical values used in this report
are as follows:

Ay compressor out | et area at station 4, (1.621 sq ft)
Ag tail-pipe-nozzle outlet erea at station 8 (hot), (sq ft)
Ag' tail-pipe-nozzle Qutlet area at station 8 at 520° R,
(1.973 sq £t)
Ay annular increnent of area of tall-pipe-nozzle outlet, (eq ft)
C jet-thrust callbration factor for tail-pipe-nozzle outl et

rake, (0.968)

Cp specific heat of air at constant pressure, (0.241 Btu/(1b)(°R))
Dy vindmilling drag, (1b)

Py j et thrust, (Ib)

Fn net thrust, (Ib)

accel eration due to gravity, (ft/seo?)

enthalpy of exhaust gas as obtalned from figure 1 of refer-
ence 3, (Btu/ib)

J mechanical equival ent of heat, (778 f£t-1b/Btu)

K éas~-flow cal i brati on factor for tall-pipe-nozzle outl et reke,
(0.964)

929
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M mass flow, (slugs/sec)

engine speed, (rpm)
P total pressure, (1b/sq ft absolute)
=) static pressure, (1b/sq £t absol ute)

P,/pg ram pressure ratio

q dynamic pressure, (Ib/sq ft)

R gas comstant, (£t-1b/(1b)}(°R)); (for air = 33.30, for
exhaust gas = 53. 86)

T total tenmperature, (OR)

Ty indicated temperature, (°R)

t static tenperature, (°R)

thp net-thrust horsepower

v vel ocity, (£t/sec)

v alrspeed, (mph)

W wei ght flow

Wf/‘FJ specific fuel consunption based on Jet thrust,
(1v/(br)(1b thrust))

Wo/F, specific fuel consumption based on net thrust,
(1b/(bx) (1b thrust))

Wf/thp specific fuel consumptlon based on net-thrust horsepower,
(1v/(br) (net-thrust hp)) (Same es corrected specific
fuel consunption based on net-thrust horeepower.)

We/My, fuel-air ratio

a t her nocoupl e impact recovery factor (0.86 at stations 4 and 8)
Y rati o of specific heats, (1.4 for air and variable for
exhaust gas)

Ty conbust i on efficiency, (percent)
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e compressor adiabatic efficiency, (percent)

Ny t urbi ne sdiabatic efficiency, (percent)

p density, (slugs/cu ft)

3] ratio of the average total pressure at front and near

compressor | nlets to absolute static pressure of NACA
standard atmosphere &}t seal evel

e ratio of the average total temperature at front and
rear compressor inlets to absolute static tempera-
ture of NACA standard atmosphere at sea level

Subscri pts:

0 effective free-stream ambi ent condition8

2 conpressor inlet, (average of front and rear inlets)
4 conpressor outlet

5 turbine-nozzle i nl et

8 tail-pipe-nozzle outlet

a air

f fuel

g exhaust ges

J vena contracta of exhaust jet

s tail-pipe-nozzle outlet shell

X annul ar increment of area in fail-pipe-nozzle outlet

The foll owi ng paraneters axre generalized to NACA standard atmos-
pberic conditions at sea |evel:

FJ/‘B corrected jet thrust, (I|b)
Fn/o corrected net thrust, (Ib)

NA6 corrected engi ne speed, (rpm)
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thp/(5/8) corrected net-thrust horsepower

vo/ve corrected true airspeed, (nph)
War6 /5 corrected air flow, (iIb/sec)
We/(84/6) corrected fuel flow, (ib/ar)

Wf/CFJdg) corrected specific fuel consumption based on Jet thrust,
(1b/(hr) (1b thrust) )

Wf/(Fnyﬁ) corrected specific fuel consumption based on net thrust,
(1b/(hr) (1b thrust))

Wf/(WAe) corrected fuel-air ratio

METHOD OF CALCULATION
Tenperature

The effective free-stream anbi ent tenperature with the ram pipe
installed is calculated fromthe ram pressure ratio:

z-1
Y
P
0
=T (1)
292

The average total tenperature at the conpressor inlets was
assuned to be equal to the average indicated tenperature at the com-
pressor inlets; this assunption resulted in an error of |ees than
0.2 percent.

Total tenmperature at the outlet of the compressor was cal cu-
| ated from the equation

%
Ty =T1,4 , < 1-2;><fiii4€> (2)

but with the indicated tenperature Ti 4 and total pressure Py at

t he compressor outlet instead of static temperature t4 and static
pressure Dp,, respectively. This procedure introduced a negligible

error in the inpact-recovery corrections.
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The static tenperature at the tail-pipe-nozzle outlet was cal -
culated from

T
— i,8
tg = 2:_1 (3)
4
P
1l + <—§\ -1
Pg/
and the total tenperature is
2-1
/e 4
Ti,s (5-?-)
Tg = AN (4)
it
Y
<P )
1+ ) — -1
Pg

The thernmocouples in the turbine-nozzle inlet (fig. 5) did not
accurately neasure the tenperature of the gas because of the prox-
imty of the flame and the high turbul ence of the flow As a
result the enthal py Hz atthe turbine-nozzle inlet was calcul ated

fromthe temperature at the tail-pipe-nozzle outlet by use of
Hg-= op (Tg4 -~ Tz) + Hy (5)

Equation (5) is based on two assumptions: (a)The bearing friction
| osses and power to accessories are snmall, and (b) the total heat

| oss between the turbine outlet and the tail-pipe-nozzle outlet is
small. The tenperature at the inlet to the turbine nozzles Tg,

corregponding to the total enthalpy Hs, was obtained fromfigure 1
of—reference 3.

All data have been corrected for small variations in the tem-
perature of the air at the conpressor inlets fromthe temperature at

the given altitude and ram pressure rati o by means of the usua
altitude generalizing factors.
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Ef fective Airspeed

Inasmuch as allcalculetlons are based on 100-percent ram effi-
ciency, the ram pressure ratio is used to determne the effective
free-stream velocity. The effective free-streamvelocity was Cal -
culated from

2=1

2 P 7
= t — -1 6
Yo >=T %0 <Po> (6)

Oning to the losses in the intake ducts during static tests,
the tot81 pressure at the conpressor inlets was slightly |ees than
the free-streamstatic pressure and t he resulting ram pressure
ratio was less than 1.0. Because effective free-stream velocity
beconmes mat hemati cal | y imaginary, quantiti es involving inlitiel
momentum at a rampressure ratio of 0.98 have been onmtted from this
report.

Gas Fl ow

Gas flow wascal cul at ed £rom temperature and pressure measure-
ments obtained with a survey rake located at the tail-pipe-nozzle
outlet. The equation for calculating gas flow was derived fromthe
definition of welight fl ow

Wg = 8ghgVs (7)

Wien Bermoullits conpressible-flow equation for velocity is applied,
the velocity of the jet at the nozzle outlet is

z=1
Y4
V. = ..Z_ZSEQ Eg -1 (3)
8 7-1 Pg
The expression for mass density is
Y
8
= 9)

and, when eguations (8) anmd (9) are substituted into equation (7),
the equation for gas flow is
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r-1
7

<f§> _1 (10)
Pg

Inasmuch as the total and static pressures and. tenperatures
vary appreciably across the tail pipe, the gas flowis the summtion
of the gas fl ow through each annul ar el enent of the tail-pipe-nozzle
outlet area. Substitution of equation (3) and application of the
gas-flow calibration factor in equation (10) gives

W = —2rg
g Pghg (7-1)Rgt8

21 z-1
Y o7

P
-1 + <T§ -1

Px
Wy = Erg g [2e > Ax| D Px (11)
8 = 8N/ {7-1)Rg * Ti,x

The values of 7 used in equation (11) correspond to the
static tenperatures at the tail-pipe-nozzle area and were obtained
froma curve for a fuel-air ratio of 0.02 and a combustlon effi -

ciency of 70 percent

In order to correct for the thermal expansion of the area of
tail-pipe-nozzle outlet, the coefficient of expansion of arez is
taken as twice the linear coefficient of expansion tines the tenper-
ature rise. Because the coefficient of |inear expansion for Inconel
is approximately 9 X 10~8 inches per inch per OF for 8 range of term
peratures from 100° to 1400° F, the equation for the hot area becones

Ag = Ag*[1 + 1.8 x1075 (Ts - 520)] (12)

Wien modified to include the correction for the hot tail-pipe-
nozzl e outlet area, equation (11) becomnes

|
y

( r ozl =2 P
7 7
P P 3
. (55 =1l +a (_p_x -1
W, = {Kpg 4 |—28—7 XL =X B
s = {2 (7-1)Rg fx Ty,x (=)

626
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wher e
y. = 1+ 1.8 x 1079 (24 - 520)
Air flowis then found by subtracting the fuel flow

Wg = Wg-~ Wp (14)

Thrust

The thrust was calculated fromthe tenperature and pressure
neasurenents used in calculating the gas flow. Calculation of jet
thrust was accomplished by the use of an equation derived fromthe
general formula

Fj = MgVy = MgVg+ Ag (pg - pg) (15)
wher e
M Vg = pghgVs” (16)

Substitution of equations (8) and (9) into equation (16) and sum-
mation of the forces fromeach incremental emuler area gives

2-1
y
MV, = -""1]-_ rg Ay <E) -1 (17)
”- Py

Substituting equation (17) into equation (15) and applylngt he
calibration factor C and the correction for the hot tail-pipe-
nozzle outlet area gives the final equation for jet thrust

r=1
2 :) e\’
Fy=C -;‘_Ll-pa(lBAx <—> -1l +Aag(pg-py) p ¥

Px
where
Y = .1+ 1.8x 10 (T, - 520)
and y varies with the tail-pipe tenperature.

The jet-thrust and the gas-flow calibration factors, which are
defined as the ratio of the measured to the cal cul ated val ues, are
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0.968 and 0.964, respectively, for the tail-pipe-nozzle outlet rake,
These factor8 were determined fromsea-|evel, static test-stand
data. Altitude-wi nd-tunnel investigations indicated that these
factors were unaffected by altitude and engine speed.

Subtract- the initial free-streammmentumof the inlet air
fromthe jet thrust gives the following equation for net thrust:

Fn = Fy - MaVg (19)
Windmilling drag was cal cul ated fromthe expression
DW' = Ma (VO - vj) (20)

whi ch was in agreement with drag nmeasured with the w nd-tunnel
bal ance.

Hor sepower

Net -t hrust horsepower may be cal culated from the product of
airspeed in feet per second and net thrust by the relation

Fp¥y

P = =g (21)

Compressor Efficiency

Conpressor adiabatic efficiency is defined as the ratio of the
adi abatic tenperature rise to the actual tenperature rise through

the conpressor
P V4
P2
= (22)

Combustion Efficiency

Conmbustion efficiency ma?]/ be defined as the ntio of the "ideal"
fuel-alr ratlo required for the production of the measured conbustion

tenperature to the fuel-air ratio actually measured

626
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i deal fuel-air ratio

To = actual fuel-air ratio (23)
The ideal fuel-air ratio is obtained by use of an alinement

chart (fig. 1 of referemce 2). The initial air temperature i s taken

as the average compressor-inlet temperature T2 and the final com

bustion tenperature is taken as the tail-pipe-nozzle outlet tota

tenperature Tg. The engi ne burned kerosens W t h8 hydrogen~carbon

ratio of 0.175 and a |l ower heating value of 18,606 Btu per pound.

Turbine Efficiency
Turbine efficiency as used herein is the ratio of the actua

t emperat ure drop to the adlabatic tenperature drop from the turbine-
nozzle inlet pressure to the tail-pipe-nozzle outlet pressure

P
3 - ;]
%5 (24)
e = 7-1
P8> 4
1- (==
Pg

Turbine efficiency is uncorrected for losses in the tail pipe
because the instrumentati on gave inaccurate temperatures at the tur-
bine outlet. Equation (24) probably gives values close to the agtual
t urbi ne efficiency because the losses in the tail pipe are small

RESULTS AND DI SCUSSI ON
Conponent Efficlencies

The performance of a Jet-propulsion engine is determned to a
large extent by the efficlencies of its conponents. Know edge of the
effects of altitude and rem pressure ratio on the conponent efficien-
cies is of assistance in analyzing the over-all performance of 8 jet
engine. Figures 6 to 8 present the variation of conpressor adiabatic
efficiency, cambustion efficiency, and turbine adiabatic efficiency,
respectively, of the I-40 engine with engine speed, altitude, and
ram pressure ratio.

Conpressor_efficiency. - Conpressor adiabatic efficiency at a
ram pressure ratio of approxinmately 1.2 reached 8 maxi mum of 69.5 per-
cent at an engine speed of 10,000 xrpm and fell off to 68 percent at
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11,500 rpm (fig. 6(a)). Altitude bad no significent effect on com
pressor efficiency at any engine speed. Figure 6(b) shows that the
conpressor efficiency decreased rapidly with increasing ram pressure
ratio at |ow engine speeds. At engine speeds above 10,000 xrpm,
however, ram pressure ratio had little effect

Combugtion efficiency. - The conbustion efficiency decreased
rapidly with increasing altitude at |ow engine speeds, &s shown in
figure 7(a). At 11,500 xrpm the conbustion efficiency varied from
approxi mately 96 to 94 percent with 8 change in altitude from
10,000 to 40,000 feet. Conbustion efficiency was unaffected by ram
pressure ratio (fig. 7(b)).

Turbine efficiency. - Turbine adiabatic efficiency at a ram
pressure ratlo of approximately 1.2 reached a maxi mum of nearly
84 percent at an engine speed of 7000 rpm and decreased to 80 per-
cent at 11,500 rxm (fig. 8(a)). Altitude had no discernible effect
on turbine efficiency at any engine speed. The data in figure 8(b)
indicate that turbine efficiency is at a maximuwm at a ram pressure
ratio of approximately 1.08 at all engine speeds and decreases with
both increasing and decreasing rem pressure ratio. At engine speeds
above approximately 8000 rpm, the effect of ram pressure ratio on
the turbine efficiency was small. No date points are shown in fig-
ure 8(b) because the great nunber of points would obscure the effect
of ram pressure ratio.

Engi ne Perfornance

Altitude effect on performance. - Conparisonof engine perform
ance at altitudes of 10,000, 20,000, 30,000, and 40,000 feet at a
ram pressure rati o of approximately 1.2 shows that air flow, Jet
thrust, net thrust, and net-thrust horsepower (figs. 9 to 12)
decreased with altitude as a result of decreased air density and
decreased mass air flow at high altitudes.

Altitude had no effect on the specific fuel consumption based
on net-thrust horsepower as shown in figure 13. Inasmuch as the
conpressor-inlet air temperature decreased with increasing altitude
and the conpressor operated at 8 higher effective corrected engine
speed and a higher conpressor pressure ratio, the cycle efficiency
was i ncreased. This increase in cycle efficiency was apparently
bal anced by the loss in conbustion efficiency (fig. 7). Increased
specific fuel consumption in the |ow engine-speed range was caused
by the | ow conponent and cycle efficiencies. Simlarly, the specific
fuel consunption based on net thrust (fig. 14) showed no altitude
effect. A% an engine speed of 11,500 rpm end & rampressure ratio
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of approximately 1.2, the specific fuel consunmption was 1.40 pounds
of fuel per horsepower-hour and 1.35 pounds of fuel per hour per
pound of net thrust.

Specific fuel consunption based on jet thrust (fig. 15)
decreased with increasing engine speed and decreasing altitude.

The fuel consumption of the |-40 engine (fig. 16) decreased
with increasing altitude at constant engine speed because the net
thrust horsepower (fig. 12) decreased with lncreasing altitude and
t he specific fuel consumption based on net thrust horsepower
(fig. 13) was unaffected by altitude.

The fuel-air ratio (fig. 17) increased with altitude through-
out the entire range of engine speeds. The increase in fuel-air
ratio at a given altitude as idling speed 1s approached is caused
by the rapid decrease in conbustion efficiency.

Ram pressure-ratio effect on performance. - Performance results
showi ng the effects of rampressure ratio at an altitude of
30,000 feet are shown in figures 18 to 26. The increase in air
flow with increasing rampressure ratio over the entire range of
engi ne speeds i S shown in figure 18. The jet thrust (fig. 19) was
greater at high vam pressure ratios as a result of the increasing
mass air flow and jet velocity.

The curves of net thrust at an altitude of 30,000 feet plotted
agai nst engi ne speed for several ram pressure ratios.cross as shown
in figure 20. A similar effect of ram pressure ratio and engine
speed on net thrust horsepower is shown in figure 21

At engine speeds greater than 8500 rpm, the epecifio fuel con-
sunption based on net thrust horsepower (fig. 22) decreased with
increasing ram pressure ratio because the cycle efficiency inproved.
In the range of |ow engine speeds the specific fuel consunmption
increased with ram pressure ratio because the ocompreseor efficiency
(fig. 6(b)) and the turbine efficiency (fig. 8(b)§rdecreased rapidly
with an increase in ram pressure ratio from1.08 to 1.76, even
t hough cycle efficiency inproved with ram pressure ratio,

Specific fuel consunption based on net thrust (fig. 23)
increased with increasing xam pressure ratio at all engine speeds;
whereas specific fuel consunption based on jet thrust decreased
(fig. 24). The increase in specific fuel consunption based on net
thrust with increasing rampressure ratio results fromthe om ssion
of airspeed in the determinati on of the net thrust specific fue
consunpt i on. -
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The extended portions of the curves in figures 22 and 23 were
determned fromthe faired curves of fuel flow, net thrust, and
net thrust horsepower plotted against engine speed

Fuel consunption was increased by increased ram pressure ratio
(fig. 25) at engine speeds greater than 9000 rpm and was decreased
at lower speeds. Fuel-air ratio (fig. 26) decreased with increased
ram pressure ratio at all engine speeds.

The specific fuel-consunption data in figures 22 and 23 are
replotted in figures 27 end 28 against net thrust horsepower and
net thrust, respectively. The power specific fuel consunption of
the 1-40 engine is a minimum at maxi num power out put

As an aid in estimting the performance of an airpl ane-engine
conbi nation, net thrust, net thrust horsepower, and specific fue
consunption based on net thrust horsepower are plotted against air-
speed at several altitudes (fig. 29 to 31)

At an engi ne speed of 11,500 at all altitudes, the m ninum

net thrust (fig. 29) was at approximately 275 miles per hour. The,
decrease in net thrust at an engine speed of 11,500 rpm was appr ox-
imately 25 percent per |0 000 foot increase | N altitude at any air
speed. At 30,006 feet and 11,500 rpm, an increase in airspeed from
235 mles per hour to 640 mles per hour resulted in an increase in
net thrust from 1525 pounds to 1890 pounds (fig. 29) and an increase
in net thrust horsepower from 955 to 3200 (fig. 30)

At an engine speed of 11,500 rpm the specific fuel consunption
based on net thrust horsepower (fig. 31) decreased from 2.10 pounds
to 0.80 pound of fuel per horsepower-hour as airspeed increased
from 235 to 640 nmiles per hour. Specific fuel consumption based on
net thrust horsepower showed no altitude effect

general i zi ng Factors

Performance testing of Jet-propul sion engines would be greatly
facilitated if data obtained at a given altitude and ram pressure
ratio could be used to estimte engine performance at any altitude
condition. The generalizing factors & and & have been derived
for the reduction of data obtained at altitude conditions to sea-
| evel conditions by applying the nethods of dimensional anal ysis
(reference 3). The generalized parameters used to present engine
performance are: engine speed, N//8; Jet thrust, F;/6; net
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thrust, Fn/8; net thrust horsepover, +thp/(8/6); air flow,
WaVe/6; fuel flow, Wp/(848); jet thrust specific fuel consumption,

W%/CF;V@); net thrust specific fuel consunption, We/(F,V8); net
thrust horsepower specific fuel consumption, Hf/%hp; and fuel-air
ratio, We/(W,6)

Altitude effect on generalized data. = Corrected air flow,
corrected jet thrust, corrected net thrust, amnd corrected net thrust
hor sepower - each reduced to a single curve at low engilne speeds for
all altitudes at a ram pressure ratio of approximately 1.2 are shown
in figures 32 to 35. At 11,500 rpm, an increase in altitude from
20,000 to 40,000 feet decreased the corrected air flow about 5 per-
cent and decreased the corrected jet thrust, corrected net thrust
and corrected net thrust horsepower about 9 percent each. The
failure of the data to generalize to one curve In figures 32 to 35
is attributed to Reynol ds nunber effect.

The specific fuel consunption based on net thrust horsepower
and net thrust, which coincidently fall on single curves in fig-
ures 13 and 14, failed to reduce to single curves in figures 36 and
37 because the combustion efficiency was onitted fromthe general-
izing factors. Corrected specific fuel consumption based on j et
thrust (fig. 38) was higher at high altitudes throughout the entire
range of engine speeds. The corrected fuel consunption plotted
agai nst corrected engine speed (fig. 39) reduced to a single curve
only at corrected engi ne speeds greater than 11,000 rpm.

Corrected fuel-afr ratio (fig. 40) came within about 10 percent
or less of being a single curve at corrected engi ne speeds greater
than 11,000 rpm and a rem pressure ratio of approximately 1.2

I nasnuch as quantities involving aixr flow generalized to one
curve only at | ow engine speeds and quantities involving fuel flow
generalized to one curve only at high engi ne speeds, the use of
generalizing factors for the 1-40 engine gives only fair results.

Corrected performance data over 8 range of ram pressure ratios
at 30,000 feet are presented in figures 41 to 49, Performence at
a particular ram pressure ratio at any altitude can be estinated
fromthese curves with the apparent accuracy |ndicated iIn the gen-
eralization of altitude data
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Windmilling Drag Charecteristica

A Jet engine is said to be windmilling when it is driven solely
by air forced through the engine by the forward notion of the plane
Values of therati 0 of windmilling drag to net thrust devel oped with
the engine operating at 11,500 rpm for the I-40 engine are plotted
agai nst true airspeed in figure 50. The net thrust used in this
ratio was obtained from figure 29 corresponding to the airspeed and
altitude at which the windmilling drag was measured. At an alti-
tude aof 20,000 feet, when the engi ne was windmilling at airspeeds
of 255 amd 550 niles per hour, the intermnal dreg increased £from 2.6
to 13.7 percent of the net thrust devel oped by the engine operating
at 11,500 rpm at the same respective airspeeds. At an airspeed of
400 miles per hour the windmilling drag decreased from 8.4 percent
atan altitude of 10,000 feet to 5.6 percent at 40,000 feet

Altitude had no effect on the ratio of windmilling drag to
free-stream dynam ¢ pressure, which varied fromO0.67 to Q.74 with
ai repeeda of 125 and 650 nil e8 per hour, respectively. (See
fig. 51.) An induction-system efficiency of 100 percent was
agsumed. i n computing the value of drag. In order to obtain the
total internal drag of the engine installation in a particular air-
pl ane, the addition of the drag induced by |osses in the induction
systemto the windmilling dreg of the engi ne is necessary.

The origin of windmilling dreg i s ghown in surveys of the
total and static pressures through the engine while windmilling.
(See fig. 52.)

SUMMARY OF RESULIS

From performance investigations of the |-40 Jet-propulsion
engi ne over a range of altitudes from 10,000 to 40,000 feet and ram
pressure ratios, based on compressor-inlet pressures,from approxi -
mately 0.98 to 1.76, the foll owi ng results were obtai ned:

1. At an engine speed of 11,500 rpm, the net thrust and net
thrust horsepower decreased about 25 percent with each 10,000-foot
increase in altitude at any airspeed

2. Specific fuel consunption based on net thrust horsepower
showed no effect of altitude. At an engine speed of 11,500 rpm
the specific fuel consunption based on net thrust horsepower
decreased from 2. 10 pounds to 0.80 pound of fuel per horsepower-
hour as the ram pressure ratio increased froml.08 to 1.76, which
ﬁorresponds to an increase in airspeed from 235 to 640 niles per

our.
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3. At an altitude of 30,000 feet and an engi ne speed of
11,500 xpm, an increase in alrspeed from 235 to 640 mles per hour
resulted in an increase in net thrust from 1525 to 1890 pounds and
an increase in net thrust horsepower from855 to 3200.

4. The use of generalizing factor8 for eatimating altitude
performance of the 1-40 engine gave only fair results. Performance
of the engine at an altitude of 40,000 feet may be cal cul ated from
wi nd-tunnel data obtainedat 20,000 feet with an accuracy within
about 9 percent at a corrected engine speed of 11,500 rpm.

5. At an altitude of 20,000 feet, the internal &rag when the
engi ne was windmilling at airspeeds of 235 and 550 miles per hour
increased from 2.6 to 13,7 percent of the net thrust devel oped by
the engine operating at 11,500 rmm at the sane respective airspeeds.
At an alrspeed of 400 niles per hour the windmilling drag decreased
from8.4 percent at an altitude of 10,000 feet to 5.6 percent at
40, 000 feet.

Fl'i ght Propul sion Research Laboratory,
Nati onal Advisory Committee for Aeronautice,
O evel and, nio.
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Figure 3. = View of alrplane fuselage showlng Induction-system alr inlets.
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Specific fuel consumption based on net thrust, Wf/Fn, 1b/(hr)(1b thrust)
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Specific fuel consumption based on net—~thrust horsepower, We/thp, 1b/thp-hr
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